Analytical solutions for In, sqrt, asin, asinh, acos, acosh, atan, atanh
on branch cuts using minus zero
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In the following z = x +iy. DLMF is NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov.

The polar form, for z # O:
z = [z] exp Argz

where Arg z is (DLMF, Sec 1.9(i), Eqns. 1.9.5, 1.9.6):

quadrant x y Arg z
1st >20,+0 =0,140 w
2nd <0,-0 =20,+0 T—w
3rd <0,-0 <0,-0 -mtw

4th 20,40 <0,-0 )
where
w= atan%%g w0, /2]
1. LOG

From DLMF (Sec 4.2(i), Eqn. 4.2.3):
Inz = In|z| +iArgz

log has a single branch cut along the negative real axis (DLMF Sec 4.2(i), Fig. 4.2.1). We need to
examine the top and the bottom boundaries of the cut, for |z| < =1, |z| = =1 and for |z| > =1. So 6 special
values must be examined.
11. z=-a-i0,a> 0

This value is in the third quadrant, with w = 0, hence

Argz =-m

If o0 < g < -1 then |z| 2 1, therefore In|z| =2 0.

If -1 < a < 0 then |z] < 1, therefore In|z| < 0.

If a = 1 then |z| = 1, therefore In|z| = 0.

Finally

Inz=b-im

where b=>0fora=1,andb<0forO0<a<1.

12. z=-a+i0,a> 0
This value is in the second quadrant, with w = 0, hence

Argz =+
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the rest is as in the previous case. Finally
Inz=b+im

where b=>20fora=1,and b <0for0<ac<1.

2. SQRT
If z = |z|(cos 8 + i sin §) then

8+2nm 6+2nm
?/z=7|z|%os Zn +isin 2” g:

) )
V|Z|%OS(§ +nm+i sin(i + nﬂ)El

Yz has a single branch cut: x <0,y =0, or 8 = £77. Hence /z on the branch cut is on the positive
. . . m . . . T
imaginary axis, + > for & = +7, and on the negative imaginary axis, — ) for 8 = -

In particular:
V0 +i0 = +0 +i0
V0 =1i0 =+0-i0

3. ASIN
From DLMF (Sec 4.23(iv), Eqn. 4.23.19):

asinz = —i In(V1 = 22 + iz)

asin has 2 branch cuts. We need to examine the top and the bottom boundaries of both cuts. So 4
special values must be examined.

31. z=-a-i0,a>1

iz=i(—a—-i0)=0-1ia
2 - . . _ 2 . N 2 .
z2=(—a—-i0)(—a-i0)=a " -0+i0+i0 =a +i0

1-22=1-a*>-i0

Vi=z22=0-iVa?-1
Vi=22+iz=0-iVa2=1+0-ia=0-i(Va?=1+a)

Remember that In z = In|z| + iArgz.

w
The imaginary part of the last expression was < 0, so it lies in 4th quadrant, with w = 5 Therefore
—— m
Arg(VT=72+iz) = - 5
—— —— T
In(V1 =22 +iz) :ln|7a2—l+a|—i§

Clearly the expression in || is real and 2 g, and since a 2 1, it is 2 1. Hence instead of || one can simply
write (Va® = 1 +a) 2 1 and therefore In(Va® = 1 +a) 2 0.
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Finally
—~iln(V1=22+iz) = —i ln(Vﬁz_: 1+a)- g - _ 757 —ib
where b =In(Va?=1+a) = 0.

Hence

Vi

asinz:—g ib,b=20

This value lies in the 3rd quadrant.
32. z==-a+i0,a=>1
iz=i(—a+i0)=-0-ia
22 = (=a +i0)(=a +i0) = a®> —=0—i0—i0 = a® - i0

1-22=1-a>+i0

nary axis. We can express it like this:
VI=z22=0+iVa® -1
VI=22+iz=0+iVa?=1-0-ia=0+i(Va?=1-a)
When a =1 then Va2 —1—-a =-1. Whena — +othen Va?—1-a - —0. So
Var-1-a<0
Hence
Vam=1-d|=a-Va¥=1
Remember that In z = In|z| + Argz. From above

—_ T
Arg(VT =22 +iz) = = )

0<a-Va?-1<1

So
In(a-Va?-1)<0
and
N ) - s
lll(71 - 22 + lZ) = ln(a _Vaz — 1) - E
Finally
—i IH(VT_—_ZZ +iz) = —iln(a —752_: 1)- g - g +ib

where

b=-In(a-Va?=-1)=In(Wa?=1+a) 20
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Hence
asinz :—g+ib,b >0
This value lies in the 2nd quadrant.
33. z=a-i0,a=1
iz=i(a—i0)=0+ia
2 =(a—-i0)(a—i0) = a*-0-i0-i0 = a*—i0
1-22=1-a*+i0

Vi=z22=0+iVa?=1
VI=22+iz=0+iVa?=1+0+ia =0+i(Va? =1 +a)

Remember that In z = In|z| + iArgz.

The imaginary part of the last expression is = 0, so

Arg(WVT=-z2+iz) = g

In(VI=22 +iz) = In[Va? = 1 +a| +i g
The expression in |.. .| is = 0, so the above can be rewritten as
VT =22 +iz) = In(VaZ= 1 +a) +i ’ET
and since a = 1, then In(Va? = 1 + a) 2 0.
Finally

b

—iln(V1=z2+iz)==iln(Va?-1+a) + %T =3

where b =In(Va?=1+a)=0.
Hence

T

asing = — —ib,b =20
2

This value lies in the 4th quadrant.

34. z=a+i0,a=>1

iz=i(a+i0)=-0+ia
22 =(a+i0)(a+i0) = a®> = 0+i0+i0 = a*> +i0

1-22=1-a*-i0
Now, the argument of i is a complex number with a non-positive real part and a negative imaginary part.
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inary axis. We can express it like this:
Vi=22=0-iVaZ-1
VI=22+iz=0-iVa?=1-0+ia=0+i(a-Va?-1)

When a = 1thena —Va?-1=1. Whena — +o then a —Va? -1 - +0. The imaginary part is = 0. The
magnitude is 0 < a —VaZ=1< 1.

Remember that In z = In|z| + Argz. Therefore from above
Arg(V1-z2+iz) = g
—— LTI
InVI=z2+iz) =In(a—VaZ = 1) +i 5
Finally
—iIn(VT=22 +iz) = =i In(a - VaZ = 1) + g = g+ ib
where
b=-In(a-Va’=1)=In(Va’=1+a)=0
Hence
) T
asing = ) +ib,b =0

This value lies in the 1st quadrant.

Finally, looking at the 4 special cases, one can confirm that

—asin(z) = asin(-z)

3.5. Summary

In summary

z asin z
-a-i0 -m/2-ib
—a+i0 -m2+ib

a—i0 /2 —ib
a+i0 /2 +ib

where in all cases b = In(Va?2 =1 +a) 2 0.
From the table above it’s easy to verify the identity (DLMF 4.23(iii), Eqn. 4.23.10):

asin(—z) = —asin(z)

4. ASINH
From DLMF (Sec 4.37(iv), Eqn. 4.37.16):

asinhz = In(VI + 22 + 2)
whereas
asinz = —i In(V1 =22 +iz)

So asinh can be expressed via asin as:
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asinhz = iasin(—iz)

asinh has 2 branch cuts, along the imaginary axis - from i to +ic, and from —i to —ico. We need to
examine the left and right boundaries of both cuts. So 4 special values must be examined.

4.1. z=-0-ia,a=1

iz=i(-0—-ia) =a—i0

—iz=—-a+i0
From the table in the previous section:
) T
asin(—a +i0) = — ) +ib
Finally
inh i( T +ib) b—i T
asinhz = i(— - =-b-i—
g=i(=5 i i3
where b = 0.

42. z=0-ia,a=1
iz=i(0—-ia)=a+i0
—iz =—a—1i0
From the table in the previous section:
asin(-a — i0) = - = — b
2
Finally
Vs T
asinhz =i(—§ —ib) =b—i§
where b = 0.

43. z=-0+ia,a=>1
iz =i(-0+ia) = —a —i0
—iz=a+i0
From the table in the previous section:
m
asin(a +i0) = 5 +ib
Finally
T T
asinhz =i(- +ib)=-b+i—
inhz = i( 2 ib) i >
where b = 0.
44. z=0+ia,a=>1
iz=i(0+ia)=—a+i0
—iz=a-i0
From the table in the previous section:

) m
asin(a —i0) = 5" ib
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Finally
asinhz = i(g —ib)y=b+i g
where b = 0.

4.5. Summary

In summary
z asinh z
+0 +ia b+in2
—O+ia -b+in/2

+0—ia b—imf2
—0-ia -b-in/2

where in all cases b = In(Va2 =1 +a) 2 0.

From the table above it’s easy to verify the identity (DLMF 4.37(iii), Eqn. 4.37.10):

asinh(—z) = —asinh(z)

5. ACOS
From DLMF (Sec 4.23(iv), Eqns. 4.23.19 and 4.23.22):

T .
acosz = B} —asing

This is not a definition, but rather a convenient mathematical identity. Since we have already studied asin,
this identity is the easiest way to study behaviour of acos on the branch cuts.

acos has the same 2 branch cuts as asin. So we use the same 4 values from the cuts.

51. z==-a-i0,a=>1

We already showed that for this z

asing = — 2 —ib,b >0
2
Hence
acosz=7l+7—7+ib:rr+ib,b20
2 2

This value lies in the 1st quadrant.
52. z==-a+i0,a =1
We already showed that for this z
. m .
asing :_5 +ib,b =0
Hence

acosz=g+ -ib=m-ib,b=0

|y

This value lies in the 4th quadrant.

53. z=a-i0,a=>1

We already showed that for this z

. Vg
asmz=§—ib,b20
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Hence

acosz =

|y

T
—§+ib:0+ib,b20
This value lies on the positive imaginary axis.

54. z=a+i0,a =1

We already showed that for this z

. mo,
asmz:§+zb,b20

Hence
ac0sz = = = L —ib=0-ib,b >0
2 2
This value lies on the negative imaginary axis.
5.5. Summary
In summary
Z acos z

-a—-i0 m+ib
-a+i0 m—ib
a—i0 0+ib
a+i0 0-ib

where in all cases b = In(VaZ -1 +a) 2 0.

From the table above it’s easy to verify the identity (DLMF 4.23(iii), Eqn. 4.23.11):

acos(—z) = m—acos(z)

6. ACOSH
From DLMF (Sec 4.37(iv), Eqn. 4.37.21:

0

E';V'+l -1
acoshz =21n Z—+;;Z—D
gv 2 2 g

acosh has a single branch cut along the real axis from 1 to —co.

6.1. z=a+i0,a<-1

V_ZH _Va—+'r+i0

2 2

V‘z—l _Va_—'l'+i0
2 2

The real parts of both expressions underyy are < 0. The imaginary parts of both expressions under 3y are

+0, meaning that the Arg of both expressions underyy are +77. Hence the principal values of both square
roots are on the positive imaginary axis:

?Z+1 _V—_a—l
_ = +l

2 2
V’z—l _V—_a+1

_— = +l

2 2
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V‘z+1 V—— gv—a—l V—_a+l[|

The expression in () is = 1, so In() = O:

EV_ZH 7—15_ gv——a—1+vq+1ﬂ+,n
0= 5 (i 2

Finally

where

62. z=a+i0,-1<a<1

V_ZH _Va—+'r+i0
2 2

The real part of the expression under is = 0. Hence:

Jz+1 _fJa+l

2 2

V’z—l_Va_—Tﬂ'()
2 2

the real part of the expression undery are < 0. The imaginary part of the expression undery; is +0,
meaning that the Arg of the expression undery is +77. Hence the principal value is on the positive imagi-

nary axis:
V’Z—l :O+iv_a+1
2 2
Jz+1 7z-1 __\/Tz+1 _V—_a+1
+ = +1
2 2 2 2

The absolute value of this complex number is:

E"Tv-zﬂ V’z—lD Eu+1+—a+1d’2_
2 0O

However in

and the Arg is:

0 —_
g ]z+l ;]z—l =a+1
Arg P

Asa - -1 Arg +’§T. Asa — 1 Arg - 0. Ifa=0thenArg:§. So

30 November 2018



-10-

§7Z+1 0+ jat =a+1
;; aan;;
D ! a+tl

Finally

=a+1
a+l

acoshz =0+ i2atanv

Asa - -1Im - +m. Asa - 1Im - O. Ifa=0thenIm=+7§T.

63. z=a-i0,-1<a<1

V‘z+1 _va—+'r—i0
2 2

The real part of the expression under is = 0. Hence:

V‘z+1 _—Ta+l

2 2

V’z—l_Va_—T—iO
2 2

the real part of the expression undery are < 0. The imaginary part of the expression undery; is =0,
meaning that the Arg of the expression under i is —77. Hence the principal value is on the negative imagi-

nary axis:
-1 =z +1
Ve
2 2
V’z+1 V'z—l __\/Tz+1 _V—_a+1
+ = -1
2 2 2 2

The absolute value of this complex number is:

E"Tv-zﬂ V‘z—lD [u+1+—a+1d’2_1
2 0O

However in

and the Arg is:

¥y Ry STy SRR My
rg —_— ——[]= atan = —atan
0 2 2 0 0 a+1|:| a+l

Asa - -1 Arg —g. Asa - 1Arg - 0. Ifa=0thenArg=—jIT. So

SV_ =
In — —zatan;;
atl

. =a+1
acoshz = 0 —ij2atan ;;
a+1

Finally

Asa - —11m - —77. Asa — 1Tm - 0. Ifa=0thenIm=—72—T.
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64. z=a-i0,a<-1

V_ZH _Va—ﬂ'—io

2 2

V‘z—l _Va_—T—iO
2 2

The real parts of both expressions underyy are < 0. The imaginary parts of both expressions under 3y are

-0, meaning that the Arg of both expressions undery; are —77. Hence the principal values of both square
roots are on the negative imaginary axis:

+1 - _
2 :O_iva 1
O 2 2
Z7—1 .v—_a+1
=0-
Q 2 ! 2
z+1 7 -1 J=a-1 ——a+1D
2 "V 70
0

The expression in () is = 1, so In() = O:

EV—ZH 7—15 gv——a—1+v——a+1ﬂ_,n
0=1In 3 (i

Finally

where

6.5. Summary

In summary
z a acosh z
a+i0 a<-1 b+im
a+i0 -1<as<+l 0+ic
a-i0 -1<as<+l 0-ic
a—i0 a<-1 b—im

where in all cases

b=21 qu"1+7'_“”m>o
= n =
vV o2 > -

O
=a+1
¢ = 2atan
a+1
T
Asa - —-l:¢c - +m Asa - 1l:c - O. Whena:O:c:?
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7. ATAN

On can use expression in DLMF Sec. 4.23(iv), Eqn. 4.23.27 for the cuts. Atan has 2 branch cuts
along the imaginary axis, from +i to +c0, and from —i to —co, DLMF Sec. 4.23(ii), Fig. 4.23.1(ii). Note that
DLMEF expression for atan in Sec. 4.23(iv), Eqn. 4.23.26 has branch cuts along the real axis, which is why
it cannot be used on atan branch cuts. Here’s why.

DLMF Eqn. 4.23.26 is:

i itz
atanz = —In ——
2 i-z
The expression for atan that can be derived from atanh (Kahan, 1987):
atanz = atanh(iz)/i

which leads to:

i 1-iz
atanz = — In -
2 1+iz

While the two atan expressions are seemingly identical:

sIhh—=-In———=-In—
2 i-z 2 -i(i—z) 2 1+iz

multiplication by i under In moves the branch cut from the real to the imaginary axis. It is easy to show

that on the branch cut

i1i+z_i —i(itz) _ i 1-iz

In(iz) ZIni +Inz

So in this section we use this expression for atan:
1-iz
1+iz

atanz = % In = % (In(1 = iz) = In(1 +iz))

which is valid everywhere in C, including the branch cuts.

We need to examine the left and the right boundaries of both cuts. So 4 special values must be exam-
ined.

7.1. The 1st quadrant: z = +0 +ig,a = 1

iz=i(+0+ia) =+i0—a
1-iz=1-i0+a=a+1-i0
In(1 —iz) =In(a +1-i0) =In(a + 1) —i0

O-o O
because the value is in the 4th quadrant and atan[)Tl 0=0.
a
1+iz=1+i0-a=1-a+i0

In(1+iz)=In(1—a+i0) =In(a—-1)+im

0o O
because the value is in the 2nd quadrant and atan[t—[]= 0.
ol ~eg
a+1

In(1—-iz)—-In(l1 +iz) =In(a+1)—i0—In(a—1)—im=In 1
-

—im

Finally
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i a+tl

atl | I
—im)=-In — = —In
1 2 a-1 2 2 a-1

i at+l &
atanz = — (In +— =
2 a-

m
2

where if a — 1 then Im — +o and when a — +co then Im — +0.

7.2. The 2nd quadrant: z = -0 +ia,a 2 1
iz=i(-0+ia) =—-i0—a

1-iz=1+i0+a=a+1+i0

In(1 —iz) =In(a + 1 +i0) = In(a + 1) +i0

0o O
because the value is in the 1st quadrant and atan[——[]= 0.
T *lg
1+iz=1-i0-a=1-a-i0

In(1 +iz) =In(1 —a —i0) =In(a - 1) =i

O-o O
because the value is in the 3rd quadrant and atan[}——[]= 0.
ol —eg
: : . : atl .
In(1-iz)-In(1+iz)=In(a+1)+i0—-In(a—-1)+im=1n =3 +im
i a+l

Finally

+im)=L1n
2" a1 2

. i(l a+1
atanz = — (In
LT o 2

where if a —» 1 then Im — +c and when a — +co then Im — +0.

7.3. The 3rd quadrant: 7z = -0 —ia,a = 1
iz=i(-0—ia)=-i0+a
1-iz=1+i0-a=1-a+i0

In(1 —iz) =In(1 —a +i0) =In(a - 1) +im

d

because the value is in the 2nd quadrant and atanDl_— g=0.
-a
O
1+iz=1-i0+a=1+a-1i0

In(1 +iz) =In(1 +a—i0) =In(a +1) —i0

because the value is in the 4th quadrant and atan[)_— 0=0.
ol *eg

atl nm T
=——+—In
2

a—1

In(l - iz) ~In(l +iz) =In(a — D +im=Ina + H+i0 =In —— +in
a
Finally
-1 i a-1 m_ m i a+l
+im)=~1In -5 =->--In
2 T a+l 2 2 2 a-1

i
t =—(
atanz 2(na+1

where if a —» 1 then Im — —oco0 and when a — +co then Im — -0
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7.4. The 4th quadrant: z = +0 —ia,a = 1
iz =i(+0—ia) =+i0+a
1-iz=1-i0-a=1-a-i0
In(1-iz)=In(1-a-i0)=In(a—-1)—im
O-o O
because the value is in the 3rd quadrant and atanDl— 0= 0.
0“0
1+iz=1+i0+a=1+a+i0

In(1 +iz) =In(1 + a +i0) = In(a + 1) +i0

0o O
because the value is in the 1st quadrant and atan[}——-[]= 0.
“*lo
: : : : a-1 .
In(l1-iz)-In(1+iz)=In(a—1)—imr—In(a+1)—-i0 =1n +1—zrr
a
Finally
i a-— . i a-1 m m i_ a+l
atanz = — (In —im) ==1In +—=—-—=1In
2 a+1 2 at+tl 2 2 2 a-1

where if a —» 1 then Im — —o and when a — +co then Im — -0.

7.5. Summary

In summary
quadrant Z atan z
1 +0+ia +m/2+ib
2 —0+ia -n/2+ib
3 —0-ia -n/2-ib
4 +0—-ia +m/2-ib

where in all cases

1 a+l
b=—In >0
2 a-1

From the table above it’s easy to verify the identity (DLMF 4.23(iii), Eqn. 4.23.12):

atan(—z) = —atan(z)

8. ATANH
From DLMF 4.37(iv), Eqn. 4.37.24:
1+z

1-z2

tanhz = — 1
atanhz = = In

However, since we have calculated special values for atanz already, it’s easier to use this identity (Kahan,
1987):

atanz = atanh(iz)/i

or

1
atan(—iz) = — atanhz
1
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or
iatan(—iz) = atanhz

atanh has 2 branch cuts along the real axis, from —1 to —c and from +1 to +co.

8.1. The 1st quadrant: 7 = +a +i0,a > 1

—iz=—i(+ta+i0) =—ia+0=+0—ia
. . . moi, a+tl
From the previous section, atan(+0 —ia) =+ — — —In ——, so
2 2 a-1
/) +1 T 1 +1 1 +1 T
atanhz:iq-——il a |:J—i—+71na —flna +i—

02 2%a-10 ‘27 2" a=1 2" 4a-1""2

8.2. The 2nd quadrant: z = —-a +i0,a = 1

—iz==i(—a+i0)=+ia+0=+0+ia

. . . T i a+tl
From the previous section, atan(+0 + ia) = + ) + 5 In T SO
a—
m i a+tlg m 1. a+l1 1 a+1 T
tanh :'D-I-—+fl =i——=1 =——1 +i—
gy T o 2 T2 - T 2 a1 2

8.3. The 3rd quadrant: z = —a —i0,a = 1

—iz==i(—a—-i0)=+ia—0=-0+ia

. . . m i a+l
From the previous section, atan(-0 +ia) = — — + —In ——, so
2 2 a-1
aom i, a+tlpg m 1. a+l 1 a+1 . m
atanhz =i = — +—1In =————1In =——In -i—
02 2 a-10 2 2 a-1 2 a-1 2

8.4. The 4th quadrant: z = +a —i0,a = 1

—iz =—i(+a—-i0) =-ia-0=-0—-1ia

. . . moi, a+tl
From the previous section, atan(-0 +ia) = — — — —In ——, so
2 2 a-1
om i, a+lg m 1. a+l 1 a+l1 @
atanhz =i = — ——1In =——+—In =+—1In -0 =
g2 2 a-10 2 2 a-1 2 a-1 2

8.5. Summary

In summary
quadrant z atanh z
1 +a+i0 +b+im/2
2 —a+i0 -b+im2
3 -a-i0 -b-imnl2
4 +a-i0 +b—im/2

where in all cases
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From the table above it’s easy to verify the identity (DLMF 4.37(iii), Eqn. 4.37.12):

atanh(—z) = —atanh(z)
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